- 1. Find a composite expansion of the following:
 - (a) $\varepsilon y'' + y(y'+3) = 0$, for 0 < x < 1, where y(0) = 1 and y(1) = 1.
 - (b) $\varepsilon y'' y(y'+1) = 0$, for 0 < x < 1, where y(0) = 3 and y(1) = 3
- $2. \ \,$ The Reynolds equation from the gas lubrication theory for slider bearings is

$$\varepsilon \frac{d}{dx}(H^3yy') = \frac{d}{dx}(Hy), \text{ for } 0 < x < 1,$$

where y(0) = y(1) = 1. Here H(x) is a known, smooth, positive function with $H(0) \neq H(1)$.

- (a) Assuming the boundary layer is at x = 1, find a composite expansion of the solution for small ε . Note the boundary layer solution will be defined implicitly but it is still possible to match the expansions.
- (b) (ignore)
- 3. 2.30(c)
- 4. Consider the problem of solving

$$\varepsilon y'' = p(y)y' + q(y), \quad \text{for } 0 < x < 1,$$

where y(0) = y(1) = 1.

- (a) Where is the layer if $p = e^y$ and $q = 5 + y^2$? You only have to provide a plausible explanation (you do not need to solve anything).
- (b) Where is the layer if $p = -e^y$ and $q = -(1 + y^2)$? You only have to provide a plausible explanation (you do not need to solve anything).