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ODE Function Summary

ODE Initial Value Problem Solvers
The following table lists the initial value problem solvers, the kind of problem you can solve
with each solver, and the method each solver uses.

Solver Solves These Kinds of
Problems

Method

ode45 Nonstiff differential
equations

Runge-Kutta

ode23 Nonstiff differential
equations

Runge-Kutta

ode113 Nonstiff differential
equations

Adams

ode15s Stiff differential equations
and DAEs

NDFs (BDFs)

ode23s Stiff differential equations Rosenbrock

ode23t Moderately stiff
differential equations and
DAEs

Trapezoidal rule

ode23tb Stiff differential equations TR-BDF2



ode15i Fully implicit differential
equations

BDFs

ODE Solution Evaluation and Extension
You can use the following functions to evaluate and extend solutions to ODEs. 

Function Description

deval Evaluate the numerical solution using the output
of ODE solvers.

odextend Extend the solution of an initial value problem for
an ODE

ODE Solvers Properties Handling
An options structure contains named properties whose values are passed to ODE solvers,
and which affect problem solution. Use these functions to create, alter, or access an options
structure.

Function Description

odeset Create or alter options structure for input to
ODE solver.

odeget Extract properties from options structure
created with odeset.

ODE Solver Output Functions
If an output function is specified, the solver calls the specified function after every
successful integration step. You can use odeset to specify one of these sample functions as
the OutputFcn property, or you can modify them to create your own functions.

Function Description

odeplot Time-series plot

odephas2 Two-dimensional phase plane
plot

odephas3 Three-dimensional phase
plane plot

odeprint Print to command window
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Introduction to Initial Value ODE Problems

What Is an Ordinary Differential
Equation?

Types of Problems Handled by
the ODE Solvers

Using Initial Conditions to
Specify the Solution of Interest

Working with Higher Order
ODEs

What Is an Ordinary Differential Equation?
The ODE solvers are designed to handle ordinary differential equations. An ordinary
differential equation contains one or more derivatives of a dependent variable  with respect
to a single independent variable , usually referred to as time. The derivative of  with respect
to  is denoted as , the second derivative as , and so on. Often  is a vector, having
elements .

Types of Problems Handled by the ODE Solvers
The ODE solvers handle the following types of first-order ODEs:

Explicit ODEs of the form 

Linearly implicit ODEs of the form , where  is a matrix

Fully implicit ODEs of the form  (ode15i only)

Using Initial Conditions to Specify the Solution of Interest
Generally there are many functions  that satisfy a given ODE, and additional information is
necessary to specify the solution of interest. In an initial value problem, the solution of
interest satisfies a specific initial condition, that is,  is equal to  at a given initial time .
An initial value problem for an ODE is then

(5-1)

If the function  is sufficiently smooth, this problem has one and only one solution.
Generally there is no analytic expression for the solution, so it is necessary to approximate 

 by numerical means, such as using one of the ODE solvers.

Working with Higher Order ODEs
The ODE solvers accept only first-order differential equations. However, ODEs often involve
a number of dependent variables, as well as derivatives of order higher than one. To use the
ODE solvers, you must rewrite such equations as an equivalent system of first-order



a number of dependent variables, as well as derivatives of order higher than one. To use the
ODE solvers, you must rewrite such equations as an equivalent system of first-order
differential equations of the form

You can write any ordinary differential equation

as a system of first-order equations by making the substitutions

The result is an equivalent system of  first-order ODEs.

Example: Solving an IVP ODE (van der Pol Equation, Nonstiff) rewrites the second-order van
der Pol equation 

as a system of first-order ODEs.
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Solvers for Explicit and Linearly Implicit ODEs

Solvers for Nonstiff Problems

Solvers for Stiff Problems

Basic ODE Solver Syntax
This section describes the ODE solver functions for explicit or linearly implicit ODEs, as
described in Types of Problems Handled by the ODE Solvers. The solver functions implement
numerical integration methods for solving initial value problems for ODEs. Beginning at the
initial time with initial conditions, they step through the time interval, computing a solution
at each time step. If the solution for a time step satisfies the solver's error tolerance criteria,
it is a successful step. Otherwise, it is a failed attempt; the solver shrinks the step size and
tries again.

Mass Matrix and DAE Properties, in the reference page for odeset, explains how to set
options to solve more general linearly implicit problems.

The function ode15i, which solves implicit ODEs, is described in Solver for Fully Implicit
ODEs.

Solvers for Nonstiff Problems
There are three solvers designed for nonstiff problems:



There are three solvers designed for nonstiff problems:

ode45 Based on an explicit Runge-Kutta (4,5) formula, the
Dormand-Prince pair. It is a one-step solver – in computing , it
needs only the solution at the immediately preceding time point, 

. In general, ode45 is the best function to apply as a "first
try" for most problems.

ode23 Based on an explicit Runge-Kutta (2,3) pair of Bogacki and
Shampine. It may be more efficient than ode45 at crude tolerances
and in the presence of mild stiffness. Like ode45, ode23 is a
one-step solver.

ode113 Variable order Adams-Bashforth-Moulton PECE solver. It may be
more efficient than ode45 at stringent tolerances and when the
ODE function is particularly expensive to evaluate. ode113 is a 
multistep solver—it normally needs the solutions at several
preceding time points to compute the current solution.

Solvers for Stiff Problems
Not all difficult problems are stiff, but all stiff problems are difficult for solvers not
specifically designed for them. Solvers for stiff problems can be used exactly like the other
solvers. However, you can often significantly improve the efficiency of these solvers by
providing them with additional information about the problem. (See Changing ODE
Integration Properties.)

There are four solvers designed for stiff problems:

ode15s Variable-order solver based on the numerical differentiation
formulas (NDFs). Optionally it uses the backward differentiation
formulas, BDFs (also known as Gear's method). Like ode113, 
ode15s is a multistep solver. If you suspect that a problem is stiff
or if ode45 failed or was very inefficient, try ode15s.

ode23s Based on a modified Rosenbrock formula of order 2. Because it is a
one-step solver, it may be more efficient than ode15s at crude
tolerances. It can solve some kinds of stiff problems for which 
ode15s is not effective.

ode23t An implementation of the trapezoidal rule using a "free" interpolant.
Use this solver if the problem is only moderately stiff and you need
a solution without numerical damping.

ode23tb An implementation of TR-BDF2, an implicit Runge-Kutta formula
with a first stage that is a trapezoidal rule step and a second stage
that is a backward differentiation formula of order 2. Like ode23s,
this solver may be more efficient than ode15s at crude tolerances.

Basic ODE Solver Syntax



Basic ODE Solver Syntax
All of the ODE solver functions, except for ode15i, share a syntax that makes it easy to try
any of the different numerical methods, if it is not apparent which is the most appropriate.
To apply a different method to the same problem, simply change the ODE solver function
name. The simplest syntax, common to all the solver functions, is 

[t,y] = solver(odefun,tspan,y0,options)

where solver is one of the ODE solver functions listed previously. 

The basic input arguments are

odefun Handle to a function that evaluates the system of ODEs. The
function has the form

dydt = odefun(t,y)

where t is a scalar, and dydt and y are column vectors. See 
Function Handles in the MATLAB Programming documentation for
more information.

tspan Vector specifying the interval of integration. The solver imposes
the initial conditions at tspan(1), and integrates from tspan(1)
to tspan(end).

y0 Vector of initial conditions for the problem

See also Introduction to Initial Value ODE Problems.
options Structure of optional parameters that change the default

integration properties. 

Changing ODE Integration Properties tells you how to create the
structure and describes the properties you can specify. 

The output arguments contain the solution approximated at discrete points:

t Column vector of time points 
y Solution array. Each row in y corresponds to the solution at a

time returned in the corresponding row of t.

See the reference page for the ODE solvers for more information about these arguments.

Note   See Evaluating the Solution at Specific Points for more information about
solver syntax where a continuous solution is returned.
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Examples: Solving Explicit ODE Problems
This section uses the van der Pol equation



This section uses the van der Pol equation

to describe the process for solving initial value ODE problems using the ODE solvers. 

Example: Solving an IVP ODE (van der Pol Equation, Nonstiff) describes each step of the
process. Because the van der Pol equation is a second-order equation, the example
must first rewrite it as a system of first order equations.
Example: The van der Pol Equation, µ = 1000 (Stiff) demonstrates the solution of a stiff
problem. 
Evaluating the Solution at Specific Points tells you how to evaluate the solution at
specific points.

Note   See Basic ODE Solver Syntax for more information.

Example: Solving an IVP ODE (van der Pol Equation, Nonstiff)
This example explains and illustrates the steps you need to solve an initial value ODE
problem:

Rewrite the problem as a system of first-order ODEs. Rewrite the van der Pol
equation (second-order)

where  is a scalar parameter, by making the substitution . The resulting
system of first-order ODEs is

See Working with Higher Order ODEs for more information.

1.

Code the system of first-order ODEs. Once you represent the equation as a system
of first-order ODEs, you can code it as a function that an ODE solver can use. The
function must be of the form 

dydt = odefun(t,y)

Although t and y must be the function's two arguments, the function does not need to
use them. The output dydt, a column vector, is the derivative of y. 
The code below represents the van der Pol system in the function, vdp1. The vdp1
function assumes that . The variables  and  are the entries y(1) and y(2) of a
two-element vector.

function dydt = vdp1(t,y)
dydt = [y(2); (1-y(1)^2)*y(2)-y(1)];

Note that, although vdp1 must accept the arguments t and y, it does not use t in its
computations. 

2.

Apply a solver to the problem.
 Decide which solver you want to use to solve the problem. Then call the solver and

3.



 Decide which solver you want to use to solve the problem. Then call the solver and
pass it the function you created to describe the first-order system of ODEs, the time
interval on which you want to solve the problem, and an initial condition vector. See 
Examples: Solving Explicit ODE Problems and the @ for descriptions of the ODE solvers.
For the van der Pol system, you can use ode45 on time interval [0 20] with initial
values y(1) = 2 and y(2) = 0.

[t,y] = ode45(@vdp1,[0 20],[2; 0]);

This example uses @ to pass vdp1 as a function handle to ode45. The resulting output
is a column vector of time points t and a solution array y. Each row in y corresponds
to a time returned in the corresponding row of t. The first column of y corresponds to 

, and the second column to .

Note   For information on function handles, see the function_handle (@), 
func2str, and str2func reference pages, and the Function Handles section of 
in the MATLAB documentation.

View the solver output. You can simply use the plot command to view the solver
output.

plot(t,y(:,1),'-',t,y(:,2),'--')
title('Solution of van der Pol Equation, \mu = 1');
xlabel('time t');
ylabel('solution y');
legend('y_1','y_2')

4.

As an alternative, you can use a solver output function to process the output. The solver
calls the function specified in the integration property OutputFcn after each successful time
step. Use odeset to set OutputFcn to the desired function. See Solver Output Properties, in
the reference page for odeset, for more information about OutputFcn.



Example: The van der Pol Equation, µ = 1000 (Stiff)
This example presents a stiff problem. For a stiff problem, solutions can change on a time
scale that is very short compared to the interval of integration, but the solution of interest
changes on a much longer time scale. Methods not designed for stiff problems are
ineffective on intervals where the solution changes slowly because they use time steps small
enough to resolve the fastest possible change.

When  is increased to 1000, the solution to the van der Pol equation changes dramatically
and exhibits oscillation on a much longer time scale. Approximating the solution of the initial
value problem becomes a more difficult task. Because this particular problem is stiff, a
solver intended for nonstiff problems, such as ode45, is too inefficient to be practical. A
solver such as ode15s is intended for such stiff problems.

The vdp1000 function evaluates the van der Pol system from the previous example, but with 
 = 1000.

function dydt = vdp1000(t,y)
dydt = [y(2); 1000*(1-y(1)^2)*y(2)-y(1)];

Note   This example hardcodes  in the ODE function. The vdpode example solves
the same problem, but passes a user-specified  as a parameter to the ODE function. 

Now use the ode15s function to solve the problem with the initial condition vector of [2;
0], but a time interval of [0 3000]. For scaling reasons, plot just the first component of 
y(t).

[t,y] = ode15s(@vdp1000,[0 3000],[2; 0]);
plot(t,y(:,1),'-');
title('Solution of van der Pol Equation, \mu = 1000');
xlabel('time t');
ylabel('solution y_1');



Note   For detailed instructions for solving an initial value ODE problem, see Example:
Solving an IVP ODE (van der Pol Equation, Nonstiff).

Parameterizing an ODE Function
The preceding sections showed how to solve the van der Pol equation for two different
values of the parameter µ. In those examples, the values µ = 1 and µ=1000 are hard-coded
in the ODE functions. If you are solving an ODE for several different parameter values, it
might be more convenient to include the parameter in the ODE function and assign a value to
the parameter each time you run the ODE solver. This section explains how to do this for the
van der Pol equation.

One way to provide parameter values to the ODE function is to write an M-file that

Accepts the parameters as inputs. 
Contains ODE function as a nested function, internally using the input parameters. 
Calls the ODE solver.

The following code illustrates this:

function [t,y] = solve_vdp(mu)
tspan = [0 max(20, 3*mu)];
y0 = [2; 0];

% Call the ODE solver ode15s.
[t,y] = ode15s(@vdp,tspan,y0);

    % Define the ODE function as nested function, 
    % using the parameter mu.
    function dydt = vdp(t,y)
    dydt = [y(2); mu*(1-y(1)^2)*y(2)-y(1)];
    end
end

Because the ODE function vdp is a nested function, the value of the parameter mu is available
to it.

To run the M-file for mu = 1, as in Example: Solving an IVP ODE (van der Pol Equation,
Nonstiff), enter

[t,y] = solve_vdp(1);

To run the code for µ = 1000, as in Example: The van der Pol Equation, µ = 1000 (Stiff), enter

[t,y] = solve_vdp(1000);

See the vdpode code for a complete example based on these functions.

Evaluating the Solution at Specific Points
The numerical methods implemented in the ODE solvers produce a continuous solution over



The numerical methods implemented in the ODE solvers produce a continuous solution over
the interval of integration . You can evaluate the approximate solution, , at any point
in  using the function deval and the structure sol returned by the solver. For example,
if you solve the problem described in Example: Solving an IVP ODE (van der Pol Equation,
Nonstiff) by calling ode45 with a single output argument sol,

sol = ode45(@vdp1,[0 20],[2; 0]);

ode45 returns the solution as a structure. You can then evaluate the approximate solution at
points in the vector xint = 1:5 as follows:

xint = 1:5;
Sxint = deval(sol,xint)

Sxint =

    1.5081    0.3235   -1.8686   -1.7407   -0.8344
   -0.7803   -1.8320   -1.0220    0.6260    1.3095

The deval function is vectorized. For a vector xint, the ith column of Sxint approximates
the solution .
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Solver for Fully Implicit ODEs
The solver ode15i solves fully implicit differential equations of the form

using the variable order BDF method. The basic syntax for ode15i is

[t,y] = ode15i(odefun,tspan,y0,yp0,options)

The input arguments are

odefun A function that evaluates the left side of the differential equation of the
form .

tspan A vector specifying the interval of integration, [t0,tf]. To obtain
solutions at specific times (all increasing or all decreasing), use tspan
= [t0,t1,...,tf].

y0, yp0 Vectors of initial conditions for  and , respectively. The
specified values must be consistent; that is, they must satisfy 
f(t0,y0,yp0) = 0. Example: Solving a Fully Implicit ODE Problem
shows how to use the function decic to compute consistent initial
conditions.



options Optional integration argument created using the odeset function. See
the odeset reference page for details.

The output arguments contain the solution approximated at discrete points:

t Column vector of time points 
y Solution array. Each row in y corresponds to the solution at a time

returned in the corresponding row of t.

See the ode15i reference page for more information about these arguments.

Note   See Evaluating the Solution at Specific Points for more information about
solver syntax where a continuous solution is returned.
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Example: Solving a Fully Implicit ODE Problem
The following example shows how to use the function ode15i to solve the implicit ODE
problem defined by Weissinger's equation

with the initial value . The exact solution of the ODE is

The example uses the function weissinger, which is provided with MATLAB, to compute the
left-hand side of the equation. 

Before calling ode15i, the example uses a helper function decic to compute a consistent
initial value for . In the following call, the given initial value  is held fixed and a
guess of 0 is specified for . See the reference page for decic for more information.

t0 = 1;
y0 = sqrt(3/2);
yp0 = 0;
[y0,yp0] = decic(@weissinger,t0,y0,1,yp0,0);

You can now call ode15i to solve the ODE and then plot the numerical solution against the
analytical solution with the following commands. 

[t,y] = ode15i(@weissinger,[1 10],y0,yp0);
ytrue = sqrt(t.^2 + 0.5);
plot(t,y,t,ytrue,'o');
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Changing ODE Integration Properties
The default integration properties in the ODE solvers are selected to handle common
problems. In some cases, you can improve ODE solver performance by overriding these
defaults. You do this by supplying the solvers with an options structure that specifies one
or more property values. 

For example, to change the value of the relative error tolerance of the solver from the default
value of 1e-3 to 1e-4,

Create an options structure using the function odeset by entering

options = odeset('RelTol', 1e-4);

1.

Pass the options structure to the solver as follows:
For all solvers except ode15i, use the syntax

[t,y] = solver(odefun,tspan,y0,options)

For ode15i, use the syntax

[t,y] = ode15i(odefun,tspan,y0,yp0,options)

2.

For an example that uses the options structure, see Example: Stiff Problem (van der Pol
Equation). For a complete description of the available options, see the reference page for 
odeset.
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Examples: Applying the ODE Initial Value Problem Solvers

Running the Examples



Example: Simple Nonstiff Problem

Example: Stiff Problem (van der
Pol Equation)

Example: Finite Element
Discretization

Example: Large, Stiff, Sparse
Problem

Example: Simple Event Location

Example: Advanced Event Location

Example: Differential-Algebraic
Problem

Example: Computing Nonnegative
Solutions

Summary of Code Examples

Running the Examples
This section contains several examples that illustrate the kinds of problems you can solve.
For each example, there is a corresponding M-file, included in MATLAB. You can

View the M-file code in an editor by entering edit followed by the name of the M-file
at the MATLAB prompt. For example, to view the code for the simple nonstiff problem
example, enter

edit rigidode

Alternatively, if you are reading this in the MATLAB Help Browser, you can click the
name of the M-file in the list below.
Run the example by entering the name of the M-file at the MATLAB prompt.

Example: Simple Nonstiff Problem
rigidode illustrates the solution of a standard test problem proposed by Krogh for solvers
intended for nonstiff problems [8].

The ODEs are the Euler equations of a rigid body without external forces.

For your convenience, the entire problem is defined and solved in a single M-file. The
differential equations are coded as a subfunction f. Because the example calls the ode45
solver without output arguments, the solver uses the default output function odeplot to
plot the solution components. 



solver without output arguments, the solver uses the default output function odeplot to
plot the solution components. 

To run this example, click on the example name, or type rigidode at the command line.

function rigidode 
%RIGIDODE  Euler equations of a rigid body without external forces
tspan = [0 12];
y0 = [0; 1; 1];

% Solve the problem using ode45
ode45(@f,tspan,y0);
% ------------------------------------------------------------
function dydt = f(t,y)
dydt = [ y(2)*y(3) 
        -y(1)*y(3) 
        -0.51*y(1)*y(2) ];

Example: Stiff Problem (van der Pol Equation)
vdpode illustrates the solution of the van der Pol problem described in Example: The van der
Pol Equation, µ = 1000 (Stiff). The differential equations

involve a constant parameter . 

As  increases, the problem becomes more stiff, and the period of oscillation becomes
larger. When  is 1000 the equation is in relaxation oscillation and the problem is very stiff.
The limit cycle has portions where the solution components change slowly and the problem
is quite stiff, alternating with regions of very sharp change where it is not stiff
(quasi-discontinuities).

By default, the solvers in the ODE suite that are intended for stiff problems approximate
Jacobian matrices numerically. However, this example provides a nested function J(t,y) to
evaluate the Jacobian matrix  analytically at (t,y) for  = MU. The use of an analytic
Jacobian can improve the reliability and efficiency of integration.



Jacobian can improve the reliability and efficiency of integration.

To run this example, click on the example name, or type vdpode at the command line. From
the command line, you can specify a value of  as an argument to vdpode. The default is mu 
 = 1000. 

function vdpode(MU)
%VDPODE  Parameterizable van der Pol equation (stiff for large MU)
if nargin < 1
  MU = 1000;     % default
end

tspan = [0; max(20,3*MU)];              % Several periods
y0 = [2; 0];
options = odeset('Jacobian',@J);

[t,y] = ode15s(@f,tspan,y0,options);

plot(t,y(:,1));
title(['Solution of van der Pol Equation, \mu = ' num2str(MU)]);
xlabel('time t');
ylabel('solution y_1');

axis([tspan(1) tspan(end) -2.5 2.5]);  
---------------------------------------------------------------
function dydt = f(t,y)
dydt = [            y(2) 
         MU*(1-y(1)^2)*y(2)-y(1) ]; 
end   % End nested function f
---------------------------------------------------------------
function dfdy = J(t,y)
dfdy = [         0                  1
         -2*MU*y(1)*y(2)-1    MU*(1-y(1)^2) ];
end   % End nested function J
end



Example: Finite Element Discretization
fem1ode illustrates the solution of ODEs that result from a finite element discretization of a
partial differential equation. The value of N in the call fem1ode(N) controls the
discretization, and the resulting system consists of N equations. By default, N is 19.

This example involves a mass matrix. The system of ODEs comes from a method of lines
solution of the partial differential equation

with initial condition  and boundary conditions . An integer 
is chosen,  is defined as , and the solution of the partial differential equation is
approximated at  for k = 0, 1, ..., N+1 by

Here  is a piecewise linear function that is 1 at  and 0 at all the other . A Galerkin
discretization leads to the system of ODEs

and the tridiagonal matrices  and  are given by

and



The initial values  are taken from the initial condition for the partial differential equation.
The problem is solved on the time interval .

In the fem1ode example, the properties 

options = odeset('Mass',@mass,'MStateDep','none','Jacobian',J) 

indicate that the problem is of the form . The nested function mass(t) evaluates
the time-dependent mass matrix  and J is the constant Jacobian.

To run this example, click on the example name, or type fem1ode at the command line.
From the command line, you can specify a value of  as an argument to fem1ode. The
default is  = 19. 

function fem1ode(N)
%FEM1ODE  Stiff problem with a time-dependent mass matrix 

if nargin < 1
  N = 19;
end
h = pi/(N+1);
y0 = sin(h*(1:N)');
tspan = [0; pi];

% The Jacobian is constant.
e = repmat(1/h,N,1);    %  e=[(1/h) ... (1/h)];
d = repmat(-2/h,N,1);   %  d=[(-2/h) ... (-2/h)]; 
% J is shared with the derivative function.
J = spdiags([e d e], -1:1, N, N);

d = repmat(h/6,N,1);  
% M is shared with the mass matrix function.
M = spdiags([d 4*d d], -1:1, N, N);

options = odeset('Mass',@mass,'MStateDep','none', ...
                 'Jacobian',J);

[t,y] = ode15s(@f,tspan,y0,options);

figure;
surf((1:N)/(N+1),t,y);
set(gca,'ZLim',[0 1]);
view(142.5,30);
title(['Finite element problem with time-dependent mass ' ...
       'matrix, solved by ODE15S']);
xlabel('space ( x/\pi )');



       'matrix, solved by ODE15S']);
xlabel('space ( x/\pi )');
ylabel('time');
zlabel('solution');
%--------------------------------------------------------------
-
function yp = f(t,y)
% Derivative function.
   yp = J*y;    % Constant Jacobian is provided by outer function
end             % End nested function f
%--------------------------------------------------------------
-
function Mt = mass(t)
% Mass matrix function.
   Mt = exp(-t)*M;    % M is provided by outer function
end                   % End nested function mass
%--------------------------------------------------------------
-
end

Example: Large, Stiff, Sparse Problem
brussode illustrates the solution of a (potentially) large stiff sparse problem. The problem is
the classic "Brusselator" system [3] that models diffusion in a chemical reaction

and is solved on the time interval [0,10] with  = 1/50 and

There are  equations in the system, but the Jacobian is banded with a constant width 5 if
the equations are ordered as 



There are  equations in the system, but the Jacobian is banded with a constant width 5 if
the equations are ordered as 

In the call brussode(N), where N corresponds to , the parameter N ≥ 2 specifies the
number of grid points. The resulting system consists of 2N equations. By default, N is 20.
The problem becomes increasingly stiff and the Jacobian increasingly sparse as N increases. 

The nested function f(t,y) returns the derivatives vector for the Brusselator problem. The
subfunction jpattern(N) returns a sparse matrix of 1s and 0s showing the locations of
nonzeros in the Jacobian . The example assigns this matrix to the property JPattern,
and the solver uses the sparsity pattern to generate the Jacobian numerically as a sparse
matrix. Providing a sparsity pattern can significantly reduce the number of function
evaluations required to generate the Jacobian and can accelerate integration. 

For the Brusselator problem, if the sparsity pattern is not supplied, 2N evaluations of the
function are needed to compute the 2N-by-2N Jacobian matrix. If the sparsity pattern is
supplied, only four evaluations are needed, regardless of the value of N.

To run this example, click on the example name, or type brussode at the command line.
From the command line, you can specify a value of  as an argument to brussode. The
default is  = 20. 

function brussode(N)
%BRUSSODE  Stiff problem modeling a chemical reaction 

if nargin < 1
  N = 20;
end

tspan = [0; 10];
y0 = [1+sin((2*pi/(N+1))*(1:N));
repmat(3,1,N)];

options = odeset('Vectorized','on','JPattern',jpattern(N));

[t,y] = ode15s(@f,tspan,y0,options);

u = y(:,1:2:end);
x = (1:N)/(N+1);
surf(x,t,u);
view(-40,30);
xlabel('space');
ylabel('time');
zlabel('solution u');
title(['The Brusselator for N = ' num2str(N)]);
% --------------------------------------------------------------
function dydt = f(t,y)
c = 0.02 * (N+1)^2;
dydt = zeros(2*N,size(y,2));      % preallocate dy/dt
% Evaluate the two components of the function at one edge of 
% the grid (with edge conditions).



% Evaluate the two components of the function at one edge of 
% the grid (with edge conditions).
i = 1;
dydt(i,:) = 1 + y(i+1,:).*y(i,:).^2 - 4*y(i,:) + ...
            c*(1-2*y(i,:)+y(i+2,:));
dydt(i+1,:) = 3*y(i,:) - y(i+1,:).*y(i,:).^2 + ...
              c*(3-2*y(i+1,:)+y(i+3,:));
% Evaluate the two components of the function at all interior 
% grid points.
i = 3:2:2*N-3;
dydt(i,:) = 1 + y(i+1,:).*y(i,:).^2 - 4*y(i,:) + ...
            c*(y(i-2,:)-2*y(i,:)+y(i+2,:));
dydt(i+1,:) = 3*y(i,:) - y(i+1,:).*y(i,:).^2 + ...
              c*(y(i-1,:)-2*y(i+1,:)+y(i+3,:));
% Evaluate the two components of the function at the other edge 
% of the grid (with edge conditions).
i = 2*N-1;
dydt(i,:) = 1 + y(i+1,:).*y(i,:).^2 - 4*y(i,:) + ...
            c*(y(i-2,:)-2*y(i,:)+1);
dydt(i+1,:) = 3*y(i,:) - y(i+1,:).*y(i,:).^2 + ...
              c*(y(i-1,:)-2*y(i+1,:)+3);
end   % End nested function f
end   % End function brussode
% --------------------------------------------------------------
function S = jpattern(N)
B = ones(2*N,5);
B(2:2:2*N,2) = zeros(N,1);
B(1:2:2*N-1,4) = zeros(N,1);
S = spdiags(B,-2:2,2*N,2*N);
end;

Example: Simple Event Location
ballode models the motion of a bouncing ball. This example illustrates the event location
capabilities of the ODE solvers.



capabilities of the ODE solvers.

The equations for the bouncing ball are

In this example, the event function is coded in a subfunction events 

[value,isterminal,direction] = events(t,y)

which returns

A value of the event function
The information whether or not the integration should stop when value = 0
(isterminal = 1 or 0, respectively) 
The desired directionality of the zero crossings:

-1 Detect zero crossings in the negative
direction only

0 Detect all zero crossings
1 Detect zero crossings in the positive

direction only

The length of value, isterminal, and direction is the same as the number of event
functions. The ith element of each vector, corresponds to the ith event function. For an
example of more advanced event location, see orbitode (Example: Advanced Event Location).

In ballode, setting the Events property to @events causes the solver to stop the
integration (isterminal = 1) when the ball hits the ground (the height y(1) is 0) during its
fall (direction = -1). The example then restarts the integration with initial conditions
corresponding to a ball that bounced.

To run this example, click on the example name, or type ballode at the command line.

function ballode
%BALLODE  Run a demo of a bouncing ball.

tstart = 0;
tfinal = 30;
y0 = [0; 20];
refine = 4;
options = odeset('Events',@events,'OutputFcn', @odeplot,...
                 'OutputSel',1,'Refine',refine);

set(gca,'xlim',[0 30],'ylim',[0 25]);
box on
hold on;

tout = tstart;



tout = tstart;
yout = y0.';
teout = [];
yeout = [];
ieout = [];
for i = 1:10
  % Solve until the first terminal event.
  [t,y,te,ye,ie] = ode23(@f,[tstart tfinal],y0,options);
  if ~ishold
    hold on
  end
  % Accumulate output.  
  nt = length(t);
  tout = [tout; t(2:nt)];
  yout = [yout; y(2:nt,:)];
  teout = [teout; te];    % Events at tstart are never reported.
  yeout = [yeout; ye];
  ieout = [ieout; ie];

  ud = get(gcf,'UserData');
  if ud.stop
    break;
  end
  
  % Set the new initial conditions, with .9 attenuation.
  y0(1) = 0;
  y0(2) = -.9*y(nt,2);

  % A good guess of a valid first time step is the length of 
  % the last valid time step, so use it for faster computation.
  options = odeset(options,'InitialStep',t(nt)-t(nt-refine),...
                           'MaxStep',t(nt)-t(1));
  tstart = t(nt);
end

plot(teout,yeout(:,1),'ro')
xlabel('time');
ylabel('height');
title('Ball trajectory and the events');
hold off
odeplot([],[],'done');
% --------------------------------------------------------------
function dydt = f(t,y)
dydt = [y(2); -9.8];
% --------------------------------------------------------------
function [value,isterminal,direction] = events(t,y)
% Locate the time when height passes through zero in a 
% decreasing direction and stop integration.



% Locate the time when height passes through zero in a 
% decreasing direction and stop integration.
value = y(1);     % Detect height = 0
isterminal = 1;   % Stop the integration
direction = -1;   % Negative direction only

Example: Advanced Event Location
orbitode illustrates the solution of a standard test problem for those solvers that are
intended for nonstiff problems. It traces the path of a spaceship traveling around the moon
and returning to the earth (Shampine and Gordon [8], p. 246). 

The orbitode problem is a system of the following four equations shown:

where

The first two solution components are coordinates of the body of infinitesimal mass, so
plotting one against the other gives the orbit of the body. The initial conditions have been
chosen to make the orbit periodic. The value of  corresponds to a spaceship traveling
around the moon and the earth. Moderately stringent tolerances are necessary to reproduce
the qualitative behavior of the orbit. Suitable values are 1e-5 for RelTol and 1e-4 for 



around the moon and the earth. Moderately stringent tolerances are necessary to reproduce
the qualitative behavior of the orbit. Suitable values are 1e-5 for RelTol and 1e-4 for 
AbsTol.

The nested events function includes event functions that locate the point of maximum
distance from the starting point and the time the spaceship returns to the starting point.
Note that the events are located accurately, even though the step sizes used by the
integrator are not determined by the location of the events. In this example, the ability to
specify the direction of the zero crossing is critical. Both the point of return to the initial
point and the point of maximum distance have the same event function value, and the
direction of the crossing is used to distinguish them.

To run this example, click on the example name, or type orbitode at the command line. The
example uses the output function odephas2 to produce the two-dimensional phase plane
plot and let you to see the progress of the integration.

function orbitode
%ORBITODE  Restricted three-body problem

mu = 1 / 82.45;
mustar = 1 - mu;
y0 = [1.2; 0; 0; -1.04935750983031990726];
tspan = [0 7];

options = odeset('RelTol',1e-5,'AbsTol',1e-4,...
                 'OutputFcn',@odephas2,'Events',@events);

[t,y,te,ye,ie] = ode45(@f,tspan,y0,options);

plot(y(:,1),y(:,2),ye(:,1),ye(:,2),'o');
title ('Restricted three body problem')
ylabel ('y(t)')
xlabel ('x(t)')
% --------------------------------------------------------------
function dydt = f(t,y)
r13 = ((y(1) + mu)^2 + y(2)^2) ^ 1.5;
r23 = ((y(1) - mustar)^2 + y(2)^2) ^ 1.5;
dydt = [ y(3)
         y(4)
         2*y(4) + y(1) - mustar*((y(1)+mu)/r13) - ...
                         mu*((y(1)-mustar)/r23)
        -2*y(3) + y(2) - mustar*(y(2)/r13) - mu*(y(2)/r23) ];
end   % End nested function f
% --------------------------------------------------------------
function [value,isterminal,direction] = events(t,y)
% Locate the time when the object returns closest to the 
% initial point y0 and starts to move away, and stop integration.
% Also locate the time when the object is farthest from the 
% initial point y0 and starts to move closer.
% 



% initial point y0 and starts to move closer.
% 
% The current distance of the body is
% 
%   DSQ = (y(1)-y0(1))^2 + (y(2)-y0(2))^2 
%       = <y(1:2)-y0(1:2),y(1:2)-y0(1:2)>
% 
% A local minimum of DSQ occurs when d/dt DSQ crosses zero 
% heading in the positive direction.  We can compute d(DSQ)/dt as
% 
%  d(DSQ)/dt = 2*(y(1:2)-y0(1:2))'*dy(1:2)/dt = ... 
%                 2*(y(1:2)-y0(1:2))'*y(3:4)
% 
dDSQdt = 2 * ((y(1:2)-y0(1:2))' * y(3:4));
value = [dDSQdt; dDSQdt];
isterminal = [1; 0];            % Stop at local minimum
direction = [1; -1];            % [local minimum, local maximum]
end   % End nested function events
end 

Example: Differential-Algebraic Problem
hb1dae reformulates the hb1ode example as a differential-algebraic equation (DAE) problem.
The Robertson problem coded in hb1ode is a classic test problem for codes that solve stiff
ODEs.

Note   The Robertson problem appears as an example in the prolog to LSODI [4].

In hb1ode, the problem is solved with initial conditions , ,  to steady



In hb1ode, the problem is solved with initial conditions , ,  to steady
state. These differential equations satisfy a linear conservation law that is used to
reformulate the problem as the DAE

These equations do not have a solution for  with components that do not sum to 1. The
problem has the form of  with

 is singular, but hb1dae does not inform the solver of this. The solver must recognize that
the problem is a DAE, not an ODE. Similarly, although consistent initial conditions are
obvious, the example uses an inconsistent value  to illustrate computation of
consistent initial conditions. 

To run this example, click on the example name, or type hb1dae at the command line. Note
that hb1dae

Imposes a much smaller absolute error tolerance on  than on the other components.
This is because  is much smaller than the other components and its major change
takes place in a relatively short time.
Specifies additional points at which the solution is computed to more clearly show the
behavior of . 
Multiplies  by 104 to make  visible when plotting it with the rest of the solution. 
Uses a logarithmic scale to plot the solution on the long time interval.

function hb1dae
%HB1DAE  Stiff differential-algebraic equation (DAE)

% A constant, singular mass matrix
M = [1 0 0
     0 1 0 
     0 0 0];

% Use an inconsistent initial condition to test initialization.
y0 = [1; 0; 1e-3];
tspan = [0 4*logspace(-6,6)];

% Use the LSODI example tolerances. The 'MassSingular' property
% is left at its default 'maybe' to test the automatic detection
% of a DAE.
options = odeset('Mass',M,'RelTol',1e-4,...
                 'AbsTol',[1e-6 1e-10 1e-6],'Vectorized','on');



options = odeset('Mass',M,'RelTol',1e-4,...
                 'AbsTol',[1e-6 1e-10 1e-6],'Vectorized','on');

[t,y] = ode15s(@f,tspan,y0,options);

y(:,2) = 1e4*y(:,2);

semilogx(t,y);
ylabel('1e4 * y(:,2)');
title(['Robertson DAE problem with a Conservation Law, '...
       'solved by ODE15S']);
xlabel('This is equivalent to the stiff ODEs coded in HB1ODE.');
% --------------------------------------------------------------
function out = f(t,y)
out = [ -0.04*y(1,:) + 1e4*y(2,:).*y(3,:)
         0.04*y(1,:) - 1e4*y(2,:).*y(3,:) - 3e7*y(2,:).^2
         y(1,:) + y(2,:) + y(3,:) - 1 ];

Example: Computing Nonnegative Solutions
If certain components of the solution must be nonnegative, use odeset to set the 
NonNegative property for the indices of these components.

Note   This option is not available for ode23s, ode15i, or for implicit solvers
(ode15s, ode23t, ode23tb) applied to problems where there is a mass matrix.

Imposing nonnegativity is not always a trivial task. We suggest that you use this option only
when necessary, for example in instances in which the application of a solution or
integration will fail otherwise.

Consider the following initial value problem solved on the interval [0, 40]:

y' = - |y|, y(0) = 1

The solution of this problem decays to zero. If a solver produces a negative approximate
solution, it begins to track the solution of the ODE through this value, the solution goes off



The solution of this problem decays to zero. If a solver produces a negative approximate
solution, it begins to track the solution of the ODE through this value, the solution goes off
to minus infinity, and the computation fails. Using the NonNegative property prevents this
from happening.

In this example, the first call to ode45 uses the defaults for the solver parameters:

ode = @(t,y) -abs(y);
[t0,y0] = ode45(ode,[0, 40], 1);

The second uses options to impose nonnegativity conditions:

options = odeset('NonNegative',1);
[t1,y1] = ode45(ode,[0, 40], 1, options);

This plot compares the numerical solution to the exact solution. 

Here is a more complete view of the code used to obtain this plot:

ode = @(t,y) -abs(y);
options = odeset('Refine',1);
[t0,y0] = ode45(ode,[0, 40], 1,options);
options = odeset(options,'NonNegative',1);
[t1,y1] = ode45(ode,[0, 40], 1, options);
t = linspace(0,40,1000);
y = exp(-t);
plot(t,y,'b-',t0,y0,'ro',t1,y1,'b*');
legend('Exact solution','No constraints','Nonnegativity', ...
       'Location','SouthWest')

The MATLAB kneeode Demo.   The MATLAB kneeode demo solves the "knee problem" by
imposing a nonnegativity constraint on the numerical solution. The initial value problem is

ε*y' = (1-x)*y - y^2,    y(0) = 1 

For 0 < ε < 1, the solution of this problem approaches null isoclines y = 1 - x and y = 0
for x < 1 and x > 1, respectively. The numerical solution, when computed with default



For 0 < ε < 1, the solution of this problem approaches null isoclines y = 1 - x and y = 0
for x < 1 and x > 1, respectively. The numerical solution, when computed with default
tolerances, follows the y = 1 - x isocline for the whole interval of integration. Imposing
nonnegativity constraints results in the correct solution.

Here is the code that makes up the kneeode demo:

function kneeode
%KNEEODE  The "knee problem" with Nonnegativity constraints.

% Problem parameter
epsilon = 1e-6;

y0 = 1;
xspan = [0, 2];
 
% Solve without imposing constraints 
options = [];
[x1,y1] = ode15s(@odefcn,xspan,y0,options);
 
% Impose nonnegativity constraint
options = odeset('NonNegative',1);
[x2,y2] = ode15s(@odefcn,xspan,y0,options);
 
figure
plot(x1,y1,'b.-',x2,y2,'g-')
axis([0,2,-1,1]);
title('The "knee problem"');
legend('No constraints','nonnegativity')
xlabel('x');
ylabel('solution y')

   function yp = odefcn(x,y)
      yp = ((1 - x)*y - y^2)/epsilon;
   end  
end  % kneeode

The derivative function is defined within nested function odefcn. The value of epsilon used
in odefcn is obtained from the outer function:

function yp = odefcn(x,y)
yp = ((1 - x)*y - y^2)/epsilon;
end

The demo solves the problem using the ode15s function, first with the default options, and
then by imposing a nonnegativity constraint. To run the demo, type kneeode at the MATLAB
command prompt. 

Here is the output plot. The plot confirms correct solution behavior after imposing
constraints. 



constraints. 

Summary of Code Examples
The following table lists the M-files for all the ODE initial value problem examples. Click the
example name to see the code in an editor. Type the example name at the command line to
run it.

Note   The Differential Equations Examples browser enables you to view the code for
the ODE examples and DAE examples. You can also run the examples from the
browser. Click these links to invoke the browser, or type odeexamples('ode') or 
odeexamples('dae') at the command line.

Example Description

amp1dae Stiff DAE — electrical circuit

ballode Simple event location — bouncing ball

batonode ODE with time- and state-dependent mass matrix —
motion of a baton

brussode Stiff large problem — diffusion in a chemical reaction
(the Brusselator)

burgersode ODE with strongly state-dependent mass matrix —
Burgers' equation solved using a moving mesh technique

fem1ode Stiff problem with a time-dependent mass matrix —
finite element method

fem2ode Stiff problem with a constant mass matrix — finite
element method

hb1ode Stiff ODE problem solved on a very long interval —
Robertson chemical reaction



hb1dae Robertson problem — stiff, linearly implicit DAE from a
conservation law

ihb1dae Robertson problem — stiff, fully implicit DAE

iburgersode Burgers' equation solved as implicit ODE system

kneeode The "knee problem" with nonnegativity constraints

orbitode Advanced event location — restricted three body problem

rigidode Nonstiff problem — Euler equations of a rigid body
without external forces

vdpode Parameterizable van der Pol equation (stiff for large )
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Questions and Answers, and Troubleshooting
This section contains a number of tables that answer questions about the use and operation
of the ODE solvers:

General ODE Solver Questions
Problem Size, Memory Use, and Computation Speed
Time Steps for Integration
Error Tolerance and Other Options
Solving Different Kinds of Problems
Troubleshooting

General ODE Solver Questions

Question Answer

How do the ODE solvers differ from quad
or quadl?

quad and quadl solve problems of the form 
. The ODE solvers handle more

general problems , linearly implicit
problems that involve a mass matrix 

, and fully implicit problems 
.

Can I solve ODE systems in which there are
more equations than unknowns, or vice
versa?

No.

Problem Size, Memory Use, and Computation Speed



Question Answer

How large a problem can I solve with the
ODE suite?

The primary constraints are memory and
time. At each time step, the solvers for
nonstiff problems allocate vectors of length 
n, where n is the number of equations in the
system. The solvers for stiff problems but
also allocate an n-by-n Jacobian matrix. For
these solvers it may be advantageous to use
the sparse option.

If the problem is nonstiff, or if you are using
the sparse option, it may be possible to
solve a problem with thousands of
unknowns. In this case, however, storage of
the result can be problematic. Try asking
the solver to evaluate the solution at
specific points only, or call the solver with
no output arguments and use an output
function to monitor the solution.

I'm solving a very large system, but only
care about a couple of the components of y.
Is there any way to avoid storing all of the
elements?

Yes. The user-installable output function
capability is designed specifically for this
purpose. When you call the solver with no
output arguments, the solver does not
allocate storage to hold the entire solution
history. Instead, the solver calls 
OutputFcn(t,y,flag) at each time step.
To keep the history of specific elements,
write an output function that stores or plots
only the elements you care about.

What is the startup cost of the integration
and how can I reduce it?

The biggest startup cost occurs as the
solver attempts to find a step size
appropriate to the scale of the problem. If
you happen to know an appropriate step
size, use the InitialStep property. For
example, if you repeatedly call the integrator
in an event location loop, the last step that
was taken before the event is probably on
scale for the next integration. See ballode
for an example.

Time Steps for Integration

Question Answer



The first step size that the integrator takes
is too large, and it misses important
behavior.

You can specify the first step size with the 
InitialStep property. The integrator tries
this value, then reduces it if necessary.

Can I integrate with fixed step sizes? No.

Error Tolerance and Other Options

Question Answer

How do I choose RelTol and AbsTol? RelTol, the relative accuracy tolerance,
controls the number of correct digits in the
answer. AbsTol, the absolute error
tolerance, controls the difference between
the answer and the solution. At each step,
the error e in component i of the solution
satisfies 

|e(i)|
≤max(RelTol*abs(y(i)),AbsTol(i))

Roughly speaking, this means that you want 
RelTol correct digits in all solution
components except those smaller than
thresholds AbsTol(i). Even if you are not
interested in a component y(i) when it is
small, you may have to specify AbsTol(i)
small enough to get some correct digits in 
y(i) so that you can accurately compute
more interesting components.

I want answers that are correct to the
precision of the computer. Why can't I
simply set RelTol to eps?

You can get close to machine precision, but
not that close. The solvers do not allow 
RelTol near eps because they try to
approximate a continuous function. At
tolerances comparable to eps, the machine
arithmetic causes all functions to look
discontinuous.



How do I tell the solver that I don't care
about getting an accurate answer for one of
the solution components?

You can increase the absolute error
tolerance corresponding to this solution
component. If the tolerance is bigger than
the component, this specifies no correct
digits for the component. The solver may
have to get some correct digits in this
component to compute other components
accurately, but it generally handles this
automatically.

Solving Different Kinds of Problems

Question Answer

Can the solvers handle partial differential
equations (PDEs) that have been discretized
by the method of lines?

Yes, because the discretization produces a
system of ODEs. Depending on the
discretization, you might have a form
involving mass matrices – the ODE solvers
provide for this. Often the system is stiff.
This is to be expected when the PDE is
parabolic and when there are phenomena
that happen on very different time scales
such as a chemical reaction in a fluid flow.
In such cases, use one of the four solvers: 
ode15s, ode23s, ode23t, ode23tb. 

If there are many equations, set the 
JPattern property. This might make the
difference between success and failure due
to the computation being too expensive. For
an example that uses JPattern, see 
Example: Large, Stiff, Sparse Problem. When
the system is not stiff, or not very stiff, 
ode23 or ode45 is more efficient than 
ode15s, ode23s, ode23t, or ode23tb.

Parabolic-elliptic partial differential
equations in 1-D can be solved directly with
the MATLAB PDE solver, pdepe. For more
information, see Partial Differential
Equations.



Can I solve differential-algebraic equation
(DAE) systems?

Yes. The solvers ode15s and ode23t can
solve some DAEs of the form 

 where  is singular.
The DAEs must be of index 1. ode15i can
solve fully implicit DAEs of index 1, 

. For examples, see amp1dae, 
hb1dae, or ihb1dae.

Can I integrate a set of sampled data? Not directly. You have to represent the data
as a function by interpolation or some other
scheme for fitting data. The smoothness of
this function is critical. A piecewise
polynomial fit like a spline can look smooth
to the eye, but rough to a solver; the solver
takes small steps where the derivatives of
the fit have jumps. Either use a smooth
function to represent the data or use one of
the lower order solvers (ode23, ode23s, 
ode23t, ode23tb) that is less sensitive to
this.

What do I do when I have the final and not
the initial value?

All the solvers of the ODE suite allow you to
solve backwards or forwards in time. The
syntax for the solvers is [t,y] =
ode45(odefun,[t0 tf],y0);and the
syntax accepts t0 > tf.

Troubleshooting

Question Answer



The solution doesn't look like what I
expected.

If you're right about its appearance, you
need to reduce the error tolerances from
their default values. A smaller relative error
tolerance is needed to compute accurately
the solution of problems integrated over
"long" intervals, as well as solutions of
problems that are moderately unstable. 

You should check whether there are solution
components that stay smaller than their
absolute error tolerance for some time. If
so, you are not asking for any correct digits
in these components. This may be
acceptable for these components, but failing
to compute them accurately may degrade
the accuracy of other components that
depend on them.

My plots aren't smooth enough. Increase the value of Refine from its
default of 4 in ode45 and 1 in the other
solvers. The bigger the value of Refine, the
more output points. Execution speed is not
affected much by the value of Refine.

I'm plotting the solution as it is computed
and it looks fine, but the code gets stuck at
some point.

First verify that the ODE function is smooth
near the point where the code gets stuck. If
it isn't, the solver must take small steps to
deal with this. It may help to break tspan
into pieces on which the ODE function is
smooth.

If the function is smooth and the code is
taking extremely small steps, you are
probably trying to solve a stiff problem with
a solver not intended for this purpose.
Switch to ode15s, ode23s, ode23t, or 
ode23tb.



My integration proceeds very slowly, using
too many time steps.

First, check that your tspan is not too long.
Remember that the solver uses as many
time points as necessary to produce a
smooth solution. If the ODE function
changes on a time scale that is very short
compared to the tspan, the solver uses a
lot of time steps. Long-time integration is a
hard problem. Break tspan into smaller
pieces.

If the ODE function does not change
noticeably on the tspan interval, it could be
that your problem is stiff. Try using ode15s, 
ode23s, ode23t, or ode23tb.

Finally, make sure that the ODE function is
written in an efficient way. The solvers
evaluate the derivatives in the ODE function
many times. The cost of numerical
integration depends critically on the expense
of evaluating the ODE function. Rather than
recompute complicated constant parameters
at each evaluation, store them in globals or
calculate them once and pass them to
nested functions.

I know that the solution undergoes a radical
change at time t where

t0 ≤ t ≤ tf

but the integrator steps past without
"seeing" it.

If you know there is a sharp change at time 
t, it might help to break the tspan interval
into two pieces, [t0 t] and [t tf], and
call the integrator twice.

If the differential equation has periodic
coefficients or solution, you might restrict
the maximum step size to the length of the
period so the integrator won't step over
periods.
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