function fig221 clf nx=1000; x=linspace(0,1,nx); % get(gcf) set(gcf,'Position', [1925 1095 573 199]); ep=0.0001; % y'' + p(x)y' + q(x)y= f(x) for xL < x < xr % set boundary conditions xl=0; yl=-2; xr=1; yr=2; h=x(2)-x(1); % calculate the coefficients of finite difference equation a=zeros(1,nx-2); b=zeros(1,nx-2); c=zeros(1,nx-2); for i=1:nx-2 a(i)=-2+h*h*q(x(i+1),ep); b(i)=1-0.5*h*p(x(i+1),ep); c(i)=1+0.5*h*p(x(i+1),ep); f(i)=h*h*rhs(x(i+1),ep); end; f(1)=f(1)-yL*b(1); f(nx-2)=f(nx-2)-yR*c(nx-2); % solve the tri-diagonal matrix problem y=tri(a,b,c,f); y=[yL, y, yr]; plot(x,y,'-','linewidth',1) hold on box on grid on axis([0 1.02 -2 2]) loc='SouthEast'; %loc='South'; xlabel('x-axis','fontsize',14,'fontweight','bold') ylabel('solution','fontsize',14,'fontweight','bold') set(gca,'fontsize',14); function g=q(x,ep) g=-x/ep; function g=p(x,ep) a=0.25; b=0.75; g=-(x-a)*(x-b)/ep; function g=rhs(x,ep) g=-x/ep; % tridiagonal solver function y = tri( a, b, c, f ) N = length(f); v = zeros(1,N); y = v; w = a(1); y(1) = f(1)/w; for i=2:N v(i-1) = c(i-1)/w; w = a(i) - b(i)*v(i-1); y(i) = ( f(i) - b(i)*y(i-1) )/w; end for j=N-1:-1:1 y(j) = y(j) - v(j)*y(j+1); end