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ABSTRACT

The mapping method of Wisdom [AJ, 87, 577 (1982)] is generalized to encompass all gravitational
n-body problems with a dominant central mass. The method is used to compute the evolution of the
outer planets for a billion years. This calculation provides independent numerical confirmation of the
result of Sussman & Wisdom [Sci, 241, 433 (1988)] that the motion of the planet Pluto is chaotic.

1. INTRODUCTION

Long-term integrations are playing an increasingly im-
portant role in investigations in dynamical astronomy. The
reason is twofold. First, numerical exploration is an essential
tool in the study of complex dynamical systems which can
exhibit chaotic behavior, and there has been a growing real-
ization of the importance of chaotic behavior in dynamical
astronomy (see, e.g., Wisdom 1987). Second, there has been
a phenomenal increase in the capabilities of computers
which is bringing many important problems in dynamical
astronomy within reach. In particular, there has recently
been considerable interest in the long-term evolution of the
solar system. Long-term integrations of the solar system in-
clude the outer planet integrations of Cohen ez al. (1973; 1
Myr), Kinoshita & Nakai (1984; 5 Myr), the first Digital
Orrery integration (Applegate et al. 1986, 210 Myr), the
LONGSTOP work (Roy et al. 1988; 100 Myr), the second
Digital Orrery integration (Sussman & Wisdom 1988; 845
Myr), and the inner planet integrations of Richardson &
Walker (1987; 2 Myr), Applegate et al. (1986; 3 Myr), and
Quinn et al. (1991; 3 Myr). Long-term integrations have
already produced startling results. Sussman & Wisdom
(1988) found numerical evidence that the motion of the
planet Pluto is chaotic, with a remarkably short timescale for
exponential divergence of trajectories of only 20 million
years. This massive calculation consumed several months of
time on the Digital Orrery, a computer built specifically for
the job which runs at about a third the speed of a Cray 1.
Subsequently, Laskar (1989, 1990), in another massive
computation, found numerical evidence that the motion of
the inner planets is also chaotic, with a divergence timescale
of only 5 million years. However, despite the phenomenal
progress in computer technology, computers are still too
slow for many important applications. For example, it is
very important to test the sensitivity of the results concern-
ing the chaotic character of the motions of the planets to
uncertainties in initial conditions and parameters. It is also
important to clarify the dynamical mechanisms responsible
for the chaotic behavior to confirm that the positive Lya-
punov exponents are not subtle numerical artifacts. The nec-
essary calculations and those of many other problems of cur-
rent interest in dynamical astronomy require orders of
magnitude greater computing power than is currently avail-

able. Regardless of the speed of computers, better, faster al-

gorithms for investigating the n-body problem are always
welcome. This paper presents a new method for studying the
long-term evolution of the n-body problem which is an order
of magnitude faster than traditional methods of numerical
integration. The method is a generalization of the “map-
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ping” method introduced by Wisdom (1982, 1983) to study
the motion of asteroids near the 3:1 mean-motion resonance
with Jupiter. It is applicable to systems which are dominated
by a large central mass such as planetary systems or satellite
systems. o

The mapping method of Wisdom (1982, 1983 ) was based
on the averaging principle. It was noted that most studies of
the long-term evolution of the n-body problem relied on the
averaging principle in one way or another. This included
both analytical and numerical studies. The intuition behind
the averaging method is that rapidly oscillating terms tend to
average out and give no net contribution to the evolution,
while more slowly varying resonant or secular terms accu-
mulate to give significant contributions to the evolution (see
Arnold 1974). The intuition behind the mapping method
was just the same: If the rapidly oscillating terms do not
contribute significantly to the evolution then replacing them
with other rapidly oscillating terms will have no ill effect. To
get the mapping the rapidly oscillating terms are chosen so
that they sum to give delta functions which can be locally
integrated to give explicit equations specifying how the sys-
tem changes from one step to the next. The mapping method
was inspired by Chirikov’s use of periodic delta functions to
derive a Hamiltonian for the standard map (Chirikov 1979).
The time step covered by the map is on the order of the
period associated with the high-frequency terms. For the
asteroid maps, the basic step was one full Jupiter period. The
algebraic simplicity of the 3:1 map and the large step size
combined to make it extraordinarily fast, about 1000 times
faster than even the numerical averaging routines available
at the time (Wisdom 1982). The great speed of the map
allowed studies of the resonant asteroid motion over much
longer times than were previously possible, and significant
new phenomena were discovered. In particular, it was found
that there was a large zone of chaotic behavior near the 3:1
resonance and that chaotic trajectories in these zones often
displayed a peculiar phenomenon in which the eccentricity
could remain at relatively low values for several hundred
thousand years and then suddenly jump to much higher val-
ues. Over longer intervals of millions of years there were
periods of low eccentricity behavior interspersed with bursts
of high eccentricity behavior. These bursts in eccentricity
were subsequently confirmed in traditional direct integra-
tions of Newton’s equations (Wisdom 1983; Murray & Fox
1984; Wisdom 1987), and explained perturbatively (Wis-
dom 1985a). The high eccentricities attained by the chaotic
trajectories help explain the formation of the 3:1 Kirkwood
gap (Wisdom 1983), as well as provide a mechanism for
transporting meteoritic material directly from the asteroid
belt to Earth (Wisdom 1985b; Wetherill 1985). Murray
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cision (which we take to be about 10~ '¢) requires about
45 000 function evaluations per orbit. Of course, higher-or-
der methods need to take significantly fewer steps per orbit.
Suppose the relative energy error from truncation can be
written A = C(h /N)°* !, where 4 is the step size divided by
the orbital period, o is the order, NV is the number of function
evaluations per step, and Cis an error constant. We presume
that the error constant in this form is comparable for all of
the higher-order methods; the factor of N is just a guess, and
works in favor of the higher-order methods. Using this esti-
mate we find that even for the eighth-order method of Yo-
shida (with 15 function evaluations per step), achieving a
relative energy error of order the machine precision requires
400 function evaluations per orbit. Thus even the high-order
versions of the simple n-body maps may still be inefficient
compared to traditional high accuracy integrators. Of
course, the relative inefficiency may be outweighed by a bet-
ter long-term growth of error. To our knowledge the long-
term growth of error for the simple symplectic n-body inte-
grators has not yet been carefully examined, particularly in
the “high accuracy” mode of operation where the truncation
error is of order the machine precision.

Consider in the same manner the possibility of using the n-
body maps described in this paper in the “high accuracy”
mode. From a numerical integration point of view, the basic
difference between these methods and the simple methods
just described is that the error constant in these new maps
may be expected to be smaller by about the ratio of the plan-
etary masses to the central mass u. For our solar system, p is
about 1073, The number of steps per orbit required to
achieve the same truncation error as the simple maps is
smaller by a factor of u = 7+ 1. For a fourth-order method
with 4 = 1073, this factor is only about 4. For the eighth-
order method, it is about 2. Considering the fact that the
steps in the Kepler-based n-body maps are a little more ex-
pensive than those in the simple #-body maps, it is not clear
that any advantage is gained by using the maps presented
here over the simpler maps, at least in the “high accuracy”
mode of operation. However, there may be an advantage to
using the Kepler-based maps for orbits with high eccentric-
ity. In this case, the simple #-body maps must take many
more steps per orbit to stably and accurately execute the
orbit, since the basic Kepler motion must be integrated as
well. On the other hand, the #-body maps presented in this
paper exactly represent a pure Kepler orbit at any eccentric-
ity. Tests in the circular and elliptic restricted problems indi-
cate the Kepler based n-body maps suffer no significant loss
of stability or accuracy at high eccentricity. In this case there
may be a significant advantage in using them over the simple
maps even in the “high accuracy” mode.

On the other hand, consider the use of the n-body maps
introduced in this paper in the “qualitative” mode of oper-
ation. Typically, efficient traditional integrators take on the
order of 100 steps per orbit. We have found that in solar
system integrations the qualitative behavior is reliably repro-
duced with as few as ten steps per orbit. Such a small number
of steps per orbit is stable here because the Kepler motion is
represented exactly and does not have to be rediscovered
each orbit. The reduction in the number of function evalua-
tions by a factor of 10 accounts roughly for the order of
magnitude greater speed of the new mapping method over
traditional integrators. The new n-body maps are the clear
winners for qualitative studies.

Of course, the relative merits of the various methods in the

1536

two different modes of operation should be studied more
thoroughly to check the estimates given here.

9. THE OUTER PLANETS FOR A BILLION YEARS

We have carried out numerous tests of the new n-body
maps. First, a number of surfaces of section for the circular
restricted three-body problem were computed with the new
map and compared to sections computed with the conven-
tional Bulirsch-Stoer numerical integration algorithm. The
agreement was excellent and provided valuable initial expe-
rience with the new maps. These tests demonstrated the reli-
ability and efficiency of the map at high eccentricity. The n-
body maps have also been implemented for the planar
elliptic restricted three-body problem. The numerical inte-
grations reported in Wisdom (1983), which also used the
conventional Bulirsch-Stoer algorithm, were all repeated
with the map, with particular attention to whether the map
would give the correct diagnosis of whether the trajectory
was chaotic or quasiperiodic. In every case, the map agreed
with the earlier results. Of course, the jumps in eccentricity
were also recovered. Note that the codes for the various ver-
sions of the restricted three-body problem can be written to
take advantage of the known fixed orbit of the two massive
bodies. Rather than present these initial tests in detail, we
present a much more stringent test. We have used the map to
compute the evolution of the outer planets, including Pluto
as a test particle, for about 1.1 billion years. For this problem
the evolution has already been computed for 845 million
years using conventional integration techniques on the Digi-
tal Orrery (Sussman & Wisdom 1988), and comparison can
be made to those results.

We have chosen to use the second-order version of the
mapping, which optimizes the agreement of the mapping
Hamiltonian with the true Hamiltonian in accordance with
our original motivation based on the averaging principle. We
have used the exact form of the interaction Hamiltonian, and
Plutois given a Jacobi index below those of the massive plan-
ets. Of course, in order to make comparisons the initial con-
ditions and parameters must be the same as those used in the
Digital Orrery integrations (Applegate et al. 1986). The
only parameter left to choose is the step size, or mapping
period. The map is used in the “qualitative” mode and the
step size is chosen to be relatively large. A number of prelimi-
nary tests indicate that the map does not work well for this
problem if fewer than five steps are taken per Jupiter orbit
period, which is about 12 yr. To add a margin of safety, a step
size of 1 yr was chosen. This may be compared to typical
steps of 40 days or less that have been used in other studies of
the outer planets using conventional numerical integration
techniques. The relative energy error oscillates as expected,
and, using this step size, has a rather large peak to peak
amplitude of about 10~°. The map is remarkably fast. A
billion year evolution of the outer planets takes only 14 days
on a Hewlett-Packard HP9000/835 RISC workstation.

All of the principal results of Sussman & Wisdom (1988)
are reproduced in the mapping evolution. For example, the
argument of perihelion of Pluto again displays a 34 million
yr modulation. The quantity # = e sin @, where @ is the lon-
gitude of perihelion, displays its strong 137 million yr period.
This is illustrated in Fig. 1 which is to be compared with 4 as
computed using the Stormer multistep predictor on the Dig-
ital Orrery, shown in Fig. 2. The two plots are not identical,
but the similarity is astounding. The inclination of Pluto
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