
Chapter 4

Linear Systems

This chapter, and the one that follows, consider problems that involve
two or more first-order ordinary di↵erential equations. Together the equa-
tions form what is called a first-order system. These are very common.
To explain why, it is worth considering a couple of examples.

Example 1: Mechanics

As stated on several occasions earlier in this text, one of the biggest
generators of di↵erential equations is Newton’s second law, which states
that F = ma. To demonstrate its connection with a system of di↵erential
equations, let x(t) denote the position of an object. The velocity is then
v = x

0(t), and the acceleration is a = x
00(t). So, F = ma can be written

as mv
0 = F . Along with the equation x

0 = v, the resulting system is

dx

dt
= v,

dv

dt
=

1

m
F.

As an example, for a uniform gravitation field, and including air resis-
tance, then F = �mg � cv (see Section 2.3.2). In this case, the system
becomes

x
0 = v,

v
0 = �g � c

m
v.

This is a linear first-order system for x and v. It is also inhomogeneous
since x ⌘ 0 and v ⌘ 0 is not a solution. ⌅
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Example 2: Epidemics

Epidemics, such as the black death, COVID-19, and cholera, have come
and gone throughout human history. Given the catastrophic nature of
these events there is a long history of scientific study trying to predict
how and why they occur. One of particular prominence is the Kermack-
McKendrick model for epidemics. This assumes the population can be
separated into three groups. One is the population S(t) of those suscepti-
ble to the disease, another is the population I(t) that is ill, and the third
is the population R(t) of individuals that have recovered. A model that
accounts for the susceptible group getting sick, the subsequent increase in
the ill population, and the eventual increase in the recovered population
is the following set of equations [Holmes, 2019]

dS

dt
= �k1SI,

dI

dt
= �k2I + k1SI,

dR

dt
= k2I.

Given the three groups, and the letters used to designate them, this is an
example of what is known as a SIR model in mathematical epidemiology.
For us, this is an example of a nonlinear first-order system for S, I, and
R. The reason it is nonlinear is the SI term that appears in the first two
equations.

As you might expect, solving a nonlinear system can be challenging.
So, in this chapter, we will concentrate on linear systems. In the next
chapter, nonlinear problems are considered.

4.1 Linear Systems

To get things started, consider the problem of solving

x
0 = ax+ by, (4.1)

y
0 = cx+ dy. (4.2)

This is a first-order, linear, homogeneous system. In these equations, x(t)
and y(t) are the dependent variables, and a, b, c, and d are constants.
This can be written in system form as

d

dt

 
x

y

!
=

 
a b

c d

! 
x

y

!
.

A simpler way to write this is as

d

dt
x = Ax, (4.3)
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where the vector is

x =

 
x

y

!
,

and the matrix is

A =

 
a b

c d

!
. (4.4)

The equation in (4.3) plays a central role throughout this chapter. Written
in this way, we could be dealing with 20 equations, or 200 equations, and
not just the two in (4.1) and (4.2).

For those a bit rusty on the basic rules for working with matrices and
vectors, a short summary is provided in Appendix A.

Before getting into the discussion of how to solve (4.3), it is worth
considering what we already know about the solution.

4.1.1 Example: Transforming to System Form

In Section 3.5, Example 1, we found that for

y
00 + 2y0 � 3y = 0 (4.5)

the roots of the characteristic equation are r1 = �3 and r2 = 1. The
resulting independent solutions are y1 = e

�3t and y2 = e
t. In this exam-

ple, the di↵erential equation, along with its solutions, are translated into
vector form.

a) Write (4.5) as a linear first-order system as in (4.3).

The standard way to do this is to let v = y
0, so the di↵erential equation

can be written as v
0 + 2v � 3y = 0, or equivalently, v0 = 3y � 2v. This,

along with the equation y
0 = v, gives us the system

y
0 = v,

v
0 = 3y � 2v.

In other words, we have an equation of the form (4.3), where

x =

 
y

v

!
, and A =

 
0 1

3 �2

!
.

b) Write the two linearly independent solutions in vector form.

For y1 = e
�3t, then v1 = y

0
1 = �3e�3t. Letting x1 be the solution vector

coming from y1, then

x1 =

 
y1

v1

!
=

 
e
�3t

�3e�3t

!
=

 
1

�3

!
e
�3t = a1e

r1t,
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where r1 = �3 and

a1 =

 
1

�3

!
.

Similarly, since v2 = y
0
2 = e

t, then letting x2 be the vector version of y2,

x2 =

 
y2

v2

!
=

 
e
t

e
t

!
=

 
1

1

!
e
t = a2e

r2t,

where r2 = 1 and

a2 =

 
1

1

!
.

c) Write the general solution in vector form.

The general solution for the second-order equation is y = c1y1 + c2y2.
From this, we get that v = y

0 = c1y
0
1 + c2y

0
2. Therefore, the general

solution vector is

x =

 
y

v

!
=

 
c1y1 + c2y2

c1y
0
1 + c2y

0
2

!
=

 
c1y1

c1y
0
1

!
+

 
c2y2

c2y
0
2

!

= c1x1 + c2x2. ⌅ (4.6)

A very useful observation to make about the above example is that
the linearly independent solutions have the form x = aert, where a is
a constant vector. In fact, when the time comes to solve (4.3) we will
simply assume that x = aert, and then find r and a. Also, note that
for the single linear equation x

0 = ax, there is one linearly independent
solution. As the above example shows, for two linear first-order equations
there are two linearly independent solutions. Consequently, it should not
be a surprise to find out that for n linear first-order equations there are
n linearly independent solutions.

4.1.2 General Version

We are going to consider solving homogeneous linear first-order systems.
Assuming there are n dependent variables, then the system can be written
as

x
0
1 = a11x1 + a12x2 + · · · a1nxn

x
0
2 = a21x1 + a22x2 + · · · a2nxn
...

...
...

x
0
n = an1x1 + an2x2 + · · · annxn,



Exercises 87

where the aij ’s are constants. This can be written as

d

dt
x = Ax, (4.7)

where A is an n⇥ n matrix, and x is an n-vector, given, respectively, as

A =

0

BBB@

a11 a12 · · · a1n

a21 a22 · · · a2n
...

... · · ·
...

an1 an2 · · · ann

1

CCCA
and x =

0

BBBB@

x1

x2

...

xn

1

CCCCA
.

For an initial value problem, an n-vector x0 would be given, and the
condition to be satisfied would be x(0) = x0.

Because (4.7) is linear and homogeneous, the principle of superposition
holds (see page 5). Therefore, if x1 and x2 are solutions of (4.7), then

x = c1x1 + c2x2

is a solution for any values of the constants c1 and c2.
As a final comment, the inhomogeneous equation d

dtx = Ax+ f is not
considered in this chapter, but it is considered in Section 6.8.

Exercises

1. Write the following as x0 = Ax, making sure to identify the entries in
x and A. If initial conditions are given, write them as x(0) = x0.

a) u
0 = u� v

v
0 = 2u� 3v

b) 2u0 = �u

3v0 = u+ v

c) x
0 = x� y + 2z

y
0 = x

z
0 = �x+ 5y

d) u
0 = u� v

v
0 = 2u� 3v

u(0) = �1, v(0) = 0

e) x
0 = 2x� z

y
0 = x+ y + z

3z0 = 2y + 6z
x(0) = �1, y(0) = 0, z(0) = 3

2. For the following: i) Write the equation in the form x0 = Ax. ii) Find
the general solution of the second-order equation and then write it in
vector form as x = c1x1 + c2x2, where x1 = a1er1t and x2 = a2er2t.
Make sure to identify a1, a2, r1 and r2.

a) y
00 + 2y0 � 3y = 0

b) 4y00 + y = 0

c) 4u00 + 3u0 � u = 0

d) u
00 + 4u0 = 0
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3. Show that the given vector x is a solution of the di↵erential equation.
Also, what initial condition does x satisfy?

a) x0 =

 
1 2

2 �2

!
x , x =

 
4

2

!
e
2t

b) x0 =

 
2 0

0 �3

!
x , x =

 
1

0

!
e
2t +

 
0

2

!
e
�3t

c) x0 =

 
1
2 1

�1 1
2

!
x , x =

 
cos t

� sin t

!
e
t/2

4. The vectors x1 and x2 are solutions of the given di↵erential equation.
Show that x = c1x1 + c2x2 is a solution no matter what the values of
c1 and c2.

a) x0 =

 
1 2

2 �2

!
x , x1 =

 
2

1

!
e
2t
, x2 =

 
1

�2

!
e
�3t

b) x0 =

 
3 1

2 2

!
x , x1 =

 
1

�2

!
e
t
, x2 =

 
1

1

!
e
4t

5. This problem considers some of the connections between a second-order
equation and a first-order system.

a) Assuming that c 6= 0, show that (4.1), (4.2) can be reduced to the
second-order linear equation

y
00 � (a+ d)y0 + (ad� bc)y = 0.

b) Using the result from part (a), transform y
00 + 2y0 � 3y = 0 into a

first-order system where none of the entries in A are zero.

c) Using part (a), and the example in Section 4.1.1, find the general
solution of the di↵erential equation in Exercise 3(a).

4.2 General Solution of a Homogeneous Equation

The problem considered here is

d

dt
x = Ax, for t > 0. (4.8)

From (4.6), as well as Exercise 2 in the previous section, we have an idea
of what the general solution of this equation looks like. Namely, if we are
able to find n linearly independent solutions x1(t), x2(t), . . ., xn(t), then
the general solution can be written as

x(t) = c1x1(t) + c2x2(t) + · · ·+ cnxn(t), (4.9)
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where c1, c2, . . ., cn are arbitrary constants.
The requirement to be linearly independent is a simple generalization

of the definition given in Section 3.2. Namely, x1(t), x2(t), . . ., xn(t) are
linearly independent if, and only if, the only constants c1, c2, . . ., cn
that satisfy

c1x1 + c2x2 + · · ·+ cnxn = 0, 8 t � 0, (4.10)

are c1 = 0, c2 = 0, . . ., cn = 0. In the above equation, 0 is the zero
vector, which means that all of its components are zero. Also, the symbol
8 is a mathematical shorthand for “for all” or “for every.”

In the last chapter the Wronskian was used to determine indepen-
dence. It is possible to also use the Wronskian with (4.8), but this is not
particularly useful for larger n. There is an easier way to show indepen-
dence, and this will be explained in Section 4.4.

The general solution of (4.8) is found by assuming that x = aert,
where a is a constant vector. Di↵erentiating this expression, x0 = raert,
and so (4.8) becomes raert = A(aert). Since e

rt is never zero we can
divide by it, which gives us the equation

Aa = ra. (4.11)

What we want are nonzero solutions of this equation, and so we require
that a 6= 0. This problem for r and a is called an eigenvalue problem,
where r is an eigenvalue, and a is an associated eigenvector. This
is one of the core topics covered in linear algebra. We do not need to
know the more theoretical aspects of this problem, but we certainly need
to know how to solve it. So, for completeness, the more pertinent aspects
of an eigenvalue problem are reviewed next.

It is worth pointing out that it is possible to solve (4.8) without using
eigenvalues and eigenvectors, and how this is done is explained in Section
6.8.

4.3 Review of Eigenvalue Problems

Given an n⇥n matrix A, its eigenvalues r and the associated eigenvectors
a are found by solving

Aa = ra. (4.12)

It is required that a is not the zero vector. There are no conditions placed
on r, and it can be real or complex valued.

In preparation for solving the above equation, it is first rewritten as
Aa� ra = 0, or equivalently as

(A� rI)a = 0. (4.13)
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The n⇥n matrix I is known as the identity matrix and it is defined as

I ⌘

0

BBB@

1 0 · · · 0
0 1 · · · 0
...

... · · ·
...

0 0 · · · 1

1

CCCA
.

For example, when n = 2 and n = 3,

I =

 
1 0

0 1

!
and I =

0

B@
1 0 0

0 1 0

0 0 1

1

CA .

In linear algebra it is shown that for the equation (4.13) to have a
nonzero solution, it is necessary that the matrix A � rI be singular, or
non-invertible. What this means is that the determinant of this matrix
is zero. This gives rise to the following method for solving the eigenvalue
problem.

Eigenvalue Algorithm. The procedure used to solve the eigenvalue prob-
lem consists of two steps:

1. Find the r’s by solving

det(A� rI) = 0. (4.14)

This is known as the characteristic equation, and the left-hand-
side of this equation is an nth degree polynomial in r.

2. For each eigenvalue r, find the associated eigenvectors by finding the
nonzero solutions of

(A� rI)a = 0. (4.15)

In this textbook we are mostly interested in systems involving two equa-
tions. For those who might not remember, the determinant of a 2 ⇥ 2
matrix is defined as

det

 
a11 a12

a21 a22

!
⌘ a11a22 � a12a21.

In the second step of the algorithm, when solving (4.15), we are inter-
ested in finding the vectors that can be used to form the general solution
of this equation. To say this more mathematically, we want to find lin-
early independent solutions. In n dimensions, it is not possible to have
more than n linearly independent vectors. Consequently, n is the max-
imum number of linearly independent eigenvectors you can find for an
n⇥ n matrix A.
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The following examples all involve 2⇥ 2 matrices. What is illustrated
are the various situations that can arise with eigenvalue problems. In
these examples, the eigenvector will be written in component form as

a =

 
a

b

!
. (4.16)

Example 1: Two Real Eigenvalues

For

A =

 
2 1

1 2

!
,

we get that

A� rI =

 
2 1

1 2

!
� r

 
1 0

0 1

!
=

 
2� r 1

1 2� r

!
.

Since det(A � rI) = (2 � r)2 � 1 = r
2 � 4r + 3, then the characteristic

equation (4.14) is r2�4r+3 = 0. Solving this we get that the eigenvalues
are r1 = 3 and r2 = 1. For r1, (4.15) takes the form

 
�1 1

1 �1

! 
a

b

!
=

 
0

0

!
.

In component form, we have that

�a+ b = 0,

a� b = 0.

The solution is b = a, and so the eigenvectors are

a =

 
a

b

!
=

 
a

a

!
= aa1, (4.17)

where

a1 =

 
1

1

!
. (4.18)

For the second eigenvalue r2 = 1, one finds that the eigenvectors have the
form a = aa2, where a is an arbitrary nonzero constant and

a2 =

 
1

�1

!
.


