
Chapter 3

Second-Order Linear
Equations

The general version of the di↵erential equations considered in this
chapter can be written as

d
2
y

dt2
+ p(t)

dy

dt
+ q(t)y = f(t), (3.1)

where p(t), q(t), and f(t) are given. One of the reasons this equation gets
its own chapter is Newton’s second law, which, if you recall, is F = ma.
To explain, if y(t) is the displacement, then the acceleration is a = y

00,
and this gives us the di↵erential equation my

00 = F . In this chapter we
are considering problems when F is a linear function of velocity y

0 and
displacement y. Later, in Chapter 5, we will consider equations where the
dependence is nonlinear. It is because of the connections with the second
law that f(t) in (3.1) is often referred to as the forcing function.

In the previous chapter, for first-order linear di↵erential equations, we
very elegantly derived a formula for the general solution. This will not
happen for second-order equations. All of the methods derived in this
chapter are, in fact, just good, or educated, guesses on what the answer
is. There are non-guessing methods, and one example involves using a
Taylor series expansion of the solution. An illustration of how this is
done can be found in Exercise 8 on page 54.

To use a guessing approach, it becomes essential to know the math-
ematical requirements for what can be called a general solution. This is
where we begin.
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44 Chapter 3. Second-Order Linear Equations

3.1 Initial Value Problem

A typical initial value problem (IVP) consists of solving (3.1), for t > 0,
with the initial conditions

y(0) = ↵, and y
0(0) = �, (3.2)

where ↵ and � are given numbers. Because our solution methods involve
guessing, it is important that we know when to stop guessing and conclude
we have found the solution. This is why the next result is useful.

Existence and Uniqueness Theorem. If p(t), q(t), and f(t) are con-
tinuous for t � 0, then there is exactly one smooth function y(t) that
satisfies (3.1) and (3.2).

In stating that y(t) is a smooth function, it is meant that y00(t) is defined
and continuous for t � 0. Those interested in the proof of the above
theorem, or the theoretical foundations of the subject, should consult
Coddington and Carlson [1997].

So, according to the above theorem, if we find a smooth function that
satisfies the di↵erential equation and initial conditions, then that is the
solution, and the only solution, of the IVP.

3.2 General Solution of a Homogeneous Equation

The associated homogeneous equation for (3.1) is

d
2
y

dt2
+ p(t)

dy

dt
+ q(t)y = 0. (3.3)

We need to spend some time discussing what it means to be the general
solution of this equation. So, consider Exercise 5(a), in Section 1.2. As-
suming you did this exercise, you found that given solutions y1 = e

2t and
y2 = e

t of y00 � 3y0 + 2y = 0, then

y(t) = c1y1(t) + c2y2(t) (3.4)

is a solution for any value of c1 and c2. What is important here is that this
is a general solution of the di↵erential equation. Roughly speaking, this
means that any, and all, solutions of the di↵erential equation are included
in this formula. A more precise statement is that, no matter what the
values of ↵ and �, there are values for c1 and c2 so that (3.4) satisfies the
di↵erential equation (3.3) as well as the given initial conditions in (3.2).

This gives rise to the question: what is required so a solution like the
one in (3.4) can be claimed to be a general solution? The answer is given
in the next result.
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General Solution Theorem. The function y(t) = c1y1(t) + c2y2(t),
where c1 and c2 are arbitrary constants, is a general solution of (3.3)
if the following are true:

1. y1(t) and y2(t) are solutions of (3.3), and

2. y1(0)y02(0)� y
0
1(0)y2(0) 6= 0.

To explain where these two requirements come from, the first one guar-
antees that y(t) is a solution of (3.3) no matter what the values of c1 and
c2. As for the initial conditions (3.2), they require that

c1y1(0) + c2y2(0) = ↵,

c1y
0
1(0) + c2y

0
2(0) = �.

Solving these equations, one gets

c1 =
↵y

0
2(0)� �y2(0)

y1(0)y02(0)� y
0
1(0)y2(0)

,

with a similar expression for c2. So, as long as y1(0)y02(0) 6= y
0
1(0)y2(0)

it is possible to find c1 and c2 so the initial conditions are satisfied (no
matter what the values of ↵ and �). In other words, y(t) is a general
solution.

Example: Show that y = c1e
�3t+ c2e

t is a general solution of y00+2y0�
3y = 0.

Answer: In this case, y1(t) = e
�3t and y2(t) = e

t. It is not hard to
show that they are solutions of the di↵erential equation (see Section
1.2). To check on the second requirement, note that y

0
1 = �3e�3t

and y
0
2 = e

t. So, y1(0)y02(0)� y
0
1(0)y2(0) = 4 6= 0. Therefore, y is a

general solution. ⌅

3.2.1 Linear Independence and the Wronskian

It is possible to restate the General Solution Theorem given above as:
“The function y(t) = c1y1(t) + c2y2(t), where c1 and c2 are arbitrary
constants, is a general solution of (3.3) if y1(t) and y2(t) are linearly inde-
pendent solutions of (3.3).” The requirement that y1 and y2 are linearly
independent means that the only constants c1 and c2 that satisfy

c1y1(t) + c2y2(t) = 0, 8 t � 0, (3.5)

are c1 = 0 and c2 = 0. This is, e↵ectively, the same definition of linear
independence used in linear algebra. The di↵erence is that we have func-
tions rather than vectors. If it is possible to find either c1 6= 0 or c2 6= 0
so (3.5) holds, then y1 and y2 are said to be linearly dependent. Also,
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in (3.5), the symbol 8 is a mathematical shorthand for “for all” or “for
every.”

The question arises about how the “independent solutions” version of
the theorem is the same as the “y1(0)y02(0)� y

0
1(0)y2(0) 6= 0” version. To

explain, given two solutions y1 and y2 of (3.3), one way to determine if
they are independent is to use what is called the Wronskian of y1 and y2.
This is defined as

W (y1, y2) ⌘ det

 
y1 y2

y
0
1 y

0
2

!
. (3.6)

For those unfamiliar with determinants, this can be written as

W (y1, y2) ⌘ y1y
0
2 � y2y

0
1. (3.7)

The usefulness of this function is due, in part, to the next result.

Independent Solutions Test. If y1 and y2 are solutions of (3.3), then
y1 and y2 are independent if, and only if, W (y1, y2) is nonzero.

The Wronskian comes into this problem because (3.5) must hold on the
interval 0  t < 1. So, (3.5) can be di↵erentiated, which gives us the
equation c1y

0
1 + c2y

0
2 = 0. This, along with (3.5), provides two equations

for c1 and c2. It is not hard to show that if W (y1, y2) 6= 0, then the
only solution to these two equations is c1 = c2 = 0. Consequently, if
W (y1, y2) 6= 0, then y1 and y2 are independent.

Now, as shown in Exercise 5, either W (y1, y2) is identically zero or else
it is never zero. Given that y1(0)y02(0)�y

0
1(0)y2(0) is the value ofW (y1, y2)

at t = 0, then from the Independent Solutions Test we conclude that y1(t)
and y2(t) are linearly independent if, and only if, y1(0)y02(0)�y

0
1(0)y2(0) 6=

0. So, the two versions of the theorem are equivalent.

Exercises

1. Assuming ! 6= 0, show that y = c1e
!t + c2e

�!t is a general solution of
y
00 � !

2
y = 0.

2. Show y = c1e
�↵t+ c2te

�↵t is a general solution of y00+2↵y0+↵
2
y = 0.

3. Assuming b 6= 0, show that y1 = 1 and y2 = e
�bt are independent

solutions of y00 + by
0 = 0.

4. Assuming ! 6= 0, show that y1 = cos(!t) and y2 = sin(!t) are inde-
pendent solutions of y00 + !

2
y = 0.

5. If y1 and y2 are solutions of (3.3), show that d
dtW + p(t)W = 0. Use

this to derive Abel’s formula, which is that

W (y1, y2) = W0e
�

R t
0 p(r)dr

,

where W0 = y1(0)y02(0)� y
0
1(0)y2(0) is the value of W at t = 0.
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3.3 Solving a Homogeneous Equation

The solution of the homogeneous equation

d
2
y

dt2
+ b

dy

dt
+ cy = 0 (3.8)

can be found by assuming that y = e
rt. With this, y0 = re

rt, and y
00 =

r
2
e
rt, and so (3.8) becomes (r2 + br + c)ert = 0. Since e

rt is never zero,
we conclude that

r
2 + br + c = 0. (3.9)

This is called the characteristic equation for (3.8). It is easily solved
using the quadratic formula, which gives us that

r =
1

2

⇣
� b±

p
b2 � 4c

⌘
. (3.10)

There are three possibilities here:

1. there are two real-valued r’s: this happens when b
2 � 4c > 0,

2. there is one r: this happens when b
2 � 4c = 0, and

3. there are two complex-valued r’s: this happens when b
2 � 4c < 0.

The case of when the roots are complex-valued requires a short introduc-
tion to complex variables, and so it is done last.

3.3.1 Two Real Roots

When there are two real-valued roots, say, r1 and r2, then the two cor-
responding solutions of (3.8) are y1 = e

r1t and y2 = e
r2t. It is left as an

exercise to show they are independent. Therefore, the resulting general
solution of (3.8) is

y = c1e
r1t + c2e

r2t.

3.3.2 One Real Root and Reduction of Order

When there is only one root, the second solution can be found using
what is called the reduction of order method. To explain, if you know a
solution y1(t), it is possible to find a second solution by assuming that
y2(t) = w(t)y1(t). In our case, we know that y1(t) = e

rt, where r =
�b/2, is a solution. So, to find a second solution it is assumed that
y(t) = w(t)ert. Substituting this into (3.8), and simplifying, yields the
di↵erential equation

w
00 + (2r + b)w0 + r

2 + br + c = 0.

Since r = �b/2, and 4c = b
2, then the above di↵erential equation reduces

to just w00 = 0. Integrating this once gives w0 = d1 and then integrating
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again yields w = d1t+ d2, where d1 and d2 are arbitrary constants. With
this our second solution is y = (d1t+d2)ert. A solution that is independent
of y1 = e

rt is obtained by taking d1 = 1 and d2 = 0, which means
that y2 = te

rt. The fact that they are independent follows from the
Independence Test since W (y1, y2) = 2ert is nonzero. Therefore, the
resulting general solution of (3.8) is

y = c1e
rt + c2te

rt
.

3.4 Complex Roots

An example of a di↵erential equation that generates complex-valued roots
is

y
00 + 4y0 + 13y = 0. (3.11)

Assuming y = e
rt, we obtain the characteristic equation r

2+4r+13 = 0.
The two solutions of this are r1 = �2 + 3i and r2 = �2� 3i. Proceeding
as in the case of two real-valued roots, the conclusion is that the resulting
general solution of (3.11) is

y = c1e
r1t + c2e

r2t

= c1e
(�2+3i)t + c2e

(�2�3i)t
. (3.12)

Because complex numbers are used in the exponents, if this expression is
used as the general solution, then c1 and c2 must be allowed to also be
complex-valued.

Although solutions as in (3.12) are used, particularly in physics, there
are other ways to write the solution that do not involve complex numbers.
Even if (3.12) is used, there is still the question of how to evaluate an
expression such as e

3i. For this reason, a short introduction to complex
variables is needed.

3.4.1 Euler’s Formula and its Consequences

The key for working with complex exponents is the following formula.

Euler’s Formula. If ✓ is real-valued then

e
i✓ = cos ✓ + i sin ✓. (3.13)

It is not possible to overemphasize the importance of this formula. It is
one of those fundamental mathematical facts that you must memorize.
For those who might wonder how this formula is obtained, it comes from
writing down the Maclaurin series of ei✓, cos ✓, and sin ✓, and then showing
that they satisfy (3.13).
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As it must, (3.13) is consistent with the usual rules involving arith-
metic, algebra, and calculus. The examples below provide illustrations of
this fact.

Example 1: Since, by definition, i =
p
�1, then i

2 = �1, i3 = �i, and
i
4 = 1. Also,

(a+ ib)2 = (a+ ib)(a+ ib)

= a
2 � b

2 + 2iab.

It is useful to be able to identify the real and imaginary part of a
complex number. So, if r = a+ ib, and a and b are real, then

Re(r) = a, and Im(r) = b.

As an example, Re(5 � 16i) = 5, and Im(5 � 16i) = �16. Finally,
two complex numbers are equal only when their respective real and
imaginary parts are equal. So, for example, to state that e

i✓ =
1
2

p
2(1 � i) requires that, using Euler’s formula, cos ✓ = 1

2

p
2 and

sin ✓ = �1
2

p
2. ⌅

Example 2: e
i⇡ = cos⇡ + i sin⇡ = �1.

This shows that the exponential function can be negative. More-
over, since e

i⇡ = �1 then, presumably, ln(�1) = i⇡ (i.e., you can
take the logarithm of a negative number). This is true, but there are
complications related to the periodicity of the trigonometric func-
tions, and to learn more about this you should take a course in
complex variables. ⌅

Example 3: e
i⇡/2 = cos⇡/2 + i sin⇡/2 = i. ⌅

Example 4: Assuming ✓ and ' are real-valued, then

e
i✓
e
i' = (cos ✓ + i sin ✓)(cos'+ i sin')

= cos ✓ cos'� sin ✓ sin'+ i(cos ✓ sin'+ sin ✓ cos')

= cos(✓ + ') + i sin(✓ + ')

= e
i(✓+')

. ⌅

Example 5: Assuming r is real-valued, then

d

dt
e
irt =

d

dt
(cos rt+ i sin rt)

= �r sin rt+ ir cos rt

= ir(cos rt+ i sin rt)

= ire
irt
. ⌅
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The next step is to extend Euler’s formula to a general complex num-
ber. With this in mind, let z = x + iy, where x and y are real-valued.
Using the usual law of exponents,

e
z = e

x+iy = e
x
e
iy

= e
x
�
cos y + i sin y

�
. (3.14)

The above expression is what we need for solving di↵erential equations.

3.4.2 Second Representation

We return to the general solution given in (3.12). With (3.14), we get the
following

y = c1e
(�2+3i)t + c2e

(�2�3i)t

= c1e
�2t
�
cos 3t+ i sin 3t

�
+ c2e

�2t
�
cos 3t� i sin 3t

�

= (c1 + c2)e
�2t cos 3t+ i(c1 � c2)e

�2t sin 3t.

We have therefore shown that the general solution can be written as

y(t) = d1e
�2t cos 3t+ d2e

�2t sin 3t. (3.15)

It is not di�cult to check that the functions y1 = e
�2t cos 3t and y2 =

e
�2t sin 3t are solutions of (3.11), and they have a nonzero Wronskian.
Moreover, since y1 and y2 do not involve complex numbers, then d1 and
d2 in the above formula are arbitrary real-valued constants.

3.4.3 Third Representation

There is a third way to write the general solution that can be useful when
studying vibration, or oscillation, problems. This comes from making the
observation that given the values of d1 and d2 in (3.15), we can write them
as a point in the plane (d1, d2). Using polar coordinates, it is possible to
find R and ' so that d1 = R cos' and d2 = R sin'. In this case,

y = d1e
�2t cos 3t+ d2e

�2t sin 3t

= Re
�2t
�
cos' cos 3t+ sin' sin 3t

�

= Re
�2t cos(3t� '). (3.16)

This last expression is the formula we are looking for. In this representa-
tion of the general solution, R and ' are arbitrary constants with R � 0.
The advantage of this form of the general solution is that it is much easier
to sketch the solution, and to determine its basic properties. Its downside
is that it can be a bit harder to find R and ' from the initial conditions
than the other two representations.
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3.5 Summary for Solving a Homogeneous Equation

To solve
y
00 + by

0 + cy = 0, (3.17)

where b and c are constants, assume y = e
rt. This leads to solving the

characteristic equation r
2+br+c = 0, and from this the resulting general

solution is given below.

Two Real Roots: r = r1, r2 (with r1 6= r2).

y = c1e
r1t + c2e

r2t (3.18)

One Real Root: r = �.

y = c1e
�t + c2te

�t (3.19)

Complex Roots: r = �± iµ (with µ 6= 0). Any of the following can be
used:

y = c1e
(�+iµ)t + c2e

(��iµ)t
, where c1, c2 are complex-valued, (3.20)

y = d1e
�t cos(µt) + d2e

�t sin(µt), where d1, d2 are real-valued, (3.21)

y = Re
�t cos(µt� '), where R,' are constants with R � 0. (3.22)

In what follows, (3.21) is used. The exception is in Section 3.10, where
(3.22) is preferred because it is easier to sketch.

Example 1: Find a general solution of y00 + 2y0 � 3y = 0.

Answer: The assumption that y = e
rt leads to the characteristic

equation r
2 + 2r � 3 = 0. The solutions of this are r = �3 and

r = 1. Therefore, a general solution is y = c1e
�3t + c2e

t. ⌅

Example 2: Find the solution of the IVP: y00 + 2y0 = 0 where y(0) = 3
and y

0(0) = �4.

Answer: The assumption that y = e
rt leads to the characteristic

equation r
2 + 2r = 0. The solutions of this are r = �2 and r = 0.

Therefore, a general solution is y = c1e
�2t + c2. To satisfy y(0) = 3

we need c1 + c2 = 3, and for y
0(0) = �4 we need �2c1 = �4.

This gives us that c1 = 2, and c2 = 1. Therefore, the solution is
y = 2e�2t + 1. ⌅

Example 3: Find the solution of the IVP: y00 � 2y0 + 26y = 0 where
y(0) = 1 and y

0(0) = �4.

Answer: The characteristic equation is r
2 � 2r + 26 = 0, and the
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solutions of this are r = 1 + 5i and r = 1 � 5i. Using (3.21), since
� = 1 and µ = 5, the general solution has the form

y = d1e
t cos(5t) + d2e

t sin(5t).

To satisfy the initial conditions we need to find y
0, which for our

solution is

y
0 = (d1 + 5d2)e

t cos(5t) + (�5d1 + d2)e
t sin(5t).

So, to satisfy y(0) = 1 we need d1 = 1, and for y0(0) = �4 we need
d1+5d2 = �4. This means that d2 = �1, and therefore the solution
of the IVP is y = e

t cos(5t)� e
t sin(5t). ⌅

Example 4: Find the solution of the IVP: y00 � 9y = 0 where y(0) = �2
and y(t) is bounded for 0  t < 1.

Answer: The assumption that y = e
rt leads to the quadratic equa-

tion r
2 = 9. The solutions of this are r = �3 and r = 3. Therefore,

a general solution is y = c1e
�3t + c2e

3t. To satisfy y(0) = 1 we
need c1 + c2 = �2. As for boundedness, e�3t is a bounded function
0  t < 1 but e

3t is not. This means we must take c2 = 0. The
resulting solution is y = �2e�3t. ⌅

As you might have noticed, in the above examples the formula for
the roots in (3.10) was not used. The reason is that it is much easier
to remember the way the characteristic equation is derived (by assuming
y = e

rt, etc) than by trying to remember the exact formula for the roots.

Exercises

1. Assuming that z1 = 1 + i, and z2 = e
2+i⇡6 , find Re(z) and Im(z):

a) z = z1 � 8

b) z = 2iz1

c) z = z2

d) z = z1 + 4z2

e) z = z1z2

f) z = (z2)6

2. Assuming ✓ and ' are real-valued, show that the following hold:

a)
1

i
= �i

b)
1

a+ ib
=

a� ib

a2 + b2

c) e
i✓ 6= 0, 8✓

d) e
�i✓ =

1

ei✓

e) (ei✓)2 = e
2i✓

f) e
i(✓+2⇡) = e

i✓

g) e
i(✓�') =

e
i✓

ei'

h)
R
e
i✓
d✓ = �ie

i✓ + c

i) cos ✓ = 1
2

�
e
i✓ + e

�i✓
�

j) sin ✓ = 1
2i

�
e
i✓ � e

�i✓
�


